|
||||
В результате корреляционного анализа из 34 контрольных (тестовых) заданий было отобрано 5 (см. табл.). Из них 1 — 3-й тесты характеризовали скоростную силу, 4-й и 5-й — прыгучесть. Не будем описывать способ проведения тестирования, так как он достаточно широко представлен в научно-методической литературе. Отметим только, что упражнения, характеризующие скоростную силу, выполнялись на акробатической дорожке без команды. В качестве же «гимнастической каретки» в одном из тестов можно использовать два колесика, соединенных осью, на которой можно закрепить стопы спортсмена. Для практического использования предложенных тестов были разработаны пропорциональные шкалы относительной оценки результатов тестирования. Наивысшую оценку — 10 баллов — спортсмен может получить только в самом информативном тесте каждого вида подготовленности (см. табл.). Наши исследования показали, что интегральный показатель определенного физического качества в большей степени отражает уровень развития данного качества, чем одно контрольное упражнение. Интегральные показатели получаются в результате суммирования относительных оценок результатов тестирования соответствующего вида физической подготовленности. Однако, определив интегральные показатели, тренер не получает информации, о возможностях спортсмена при выполнении конкретного элемента. Использование уравнений регрессии позволяет на основании данных об уровне физической подготовленности получить количественную характеристику технической подготовленности (в нашем случае — КТ). Уравнение множественной регрессии, составленное на основе интегральных показателей, предполагает также учет возможности компенсации одних качеств другими. Полученное нами уравнение имеет вид: У = = 7,36 + 0,488X1 + 0,31X2 , где У — суммарный КТ двух наиболее сложных элементов, выпол- |
няемых с винтовым и без винтового вращения, взятых с учетом увеличения стоимости элемента при выполнении его в переход (средняя ошибка У — ±1,8 балла); X1 — интегральный показатель скоростной силы; Х2 — интегральный показатель прыгучести. Данное уравнение пригодно при оценке подготовленности спортсменов не моложе 16 лет, имеющих рост не менее 156 см, при условии предположения возможности выполнения ими любых двойных или тройных сальто. Подставляя в уравнение регрессии полученные результаты интегральных показателей физической подготовленности, получаем суммарный КТ двух элементов (У). Например: получен результат, равный 12 баллам. По таблице, принятой правилами соревнований при оценке акробатических прыжков, находим элементы, примерно соответствующие 6,0±0,9 балла (12 делим пополам). Данный коэффициент имеют: двойное сальто прогнувшись и двойное прогнувшись с пируэтом. Если спортсмен, для которого на основании интегральных показателей определена возможность выполнять данные элементы, их еще не выполняет, можно констатировать у него отставание уровня технической подготовленности от уровня физической подготовленности. В случае выполнения спортсменом более сложных элементов, чем определили интегральные показатели, можно с уверенностью говорить, что при относительно низком уровне развития физических качеств у спортсмена достаточно высока степень реализации этого уровня в основном упражнении. При попытке освоения данным акробатом более сложного элемента главным лимитирующим фактором для него будет недостаточная физическая подготовленность. Таким образом, использование предлагаемого уравнения может способствовать реализации принципа доступности при освоении сложных элементов. При этом следует исходить из того, что уровень развития физических качеств должен несколько превышать необходимый. |
|||
СТРАНИЦЫ ИСТОРИИ |
||||
В. Д. Найпак, заместитель председателя Федерации художественной гимнастики СССР |
||||
Ничто не возникает на пустом месте. Художественная гимнастика, 50-летие которой спортивная общественность страны отметила в декабре 1984 года, прежде чем стать олимпийским видом спорта, завоевать популярность миллионов девушек на всех континентах, прошла длительный путь развития. |
Говоря о становлении художественной гимнастики, специалисты всегда упоминают три «Д». Кто же скрывается за этой таинственной буквой? Известный вокальный педагог и теоретик сценического жеста Франсуа Дельсарт (1811 — 1871), открывший в 1839 г. в Париже курсы |
|||
57 |
Назад Дальше К содержанию На главную В библиотеку В начало |